We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Ultrasound Helmet Designed for Live Images and Brain-Machine Interface

By MedImaging International staff writers
Posted on 21 May 2018
Print article
Image: Researchers plan to create a brain-machine interface using an ultrasound helmet and an EEG (Photo courtesy of Vanderbilt University).
Image: Researchers plan to create a brain-machine interface using an ultrasound helmet and an EEG (Photo courtesy of Vanderbilt University).
A team of researchers from Vanderbilt University (Nashville, TN, USA) plan to create a brain-machine interface using an ultrasound helmet and electroencephalogram (EEG) that would allow doctors to view images as clear as those of the heart or womb. By using ultrasound technology for the brain, doctors could not only view real-time images during surgery, but also gain a better understanding of which areas become stimulated by certain feelings or actions. The ultrasound helmet would ultimately provide an effective way for people to control software and robotics by thinking about it.

Ultrasound beams bouncing around inside the skull make it practically impossible to view any useful imagery. Brett Byram, assistant professor of biomedical engineering at Vanderbilt University, plans to use machine learning that will gradually be able to account for the distortion and deliver workable images. Byram also plans to integrate EEG technology to allow doctors to view brain perfusion—how blood flow correlates to changes in thought—as well as the areas of stimulation related to movement and emotion. Byram will use his new USD 550,000 grant received from the National Science Foundation Faculty Early Career Development to develop the helmet, working alongside Leon Bellan, assistant professor of mechanical engineering and biomedical engineering, and Michael Miga, Harvie Branscomb Professor and professor of biomedical engineering, radiology and neurological surgery.

The researchers believe that the applications of such an ultrasound helmet could be endless. For instance, a person with limited movement due to ALS could simply think about wanting a glass of water, making a robotic arm to retrieve one as the helmet would detect blood flow and EEG information that told it to do so.

“The goal is to create a brain-machine interface using an ultrasound helmet and EEG,” said Byram. “A lot of the technology we’re using now wasn’t available when people were working on this 20 or 30 years ago. Deep neural networks and machine learning have become popular, and our group is the first to show how you can use those for ultrasound beamforming.”

Related Links:
Vanderbilt University

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
DR Flat Panel Detector
1500L
New
Ultrasound Software
UltraExtend NX
New
Portable X-Ray Unit
AJEX240H

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

Nuclear Medicine

view channel
Image: The AI system uses scintigraphy imaging for early diagnosis of cardiac amyloidosis (Photo courtesy of 123RF)

AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging

Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read more

General/Advanced Imaging

view channel
Image: The CIARTIC Move self-driving mobile C-arm has received FDA clearance (Photo courtesy of Siemens)

Self-Driving Mobile C-Arm Reduces Imaging Time during Surgery

Intraoperative imaging faces significant challenges due to staff shortages and the high demands placed on surgical teams in the operating room (OR). A common challenge during many OR procedures is the... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.